A GENERALIZED ABOVEGROUND BIOMASS MODEL FOR JUVENILE INDIVIDUALS OF Rhododendron arboreum (SM.) IN NEPAL

Cerne

Endereço:
Departamento de Ciências Florestais, Universidade Federal de Lavras, Caixa Postal 3037
Lavras / MG
0
Site: http://www.dcf.ufla.br/cerne
Telefone: (35) 3829-1706
ISSN: 1047760
Editor Chefe: Gilvano Ebling Brondani
Início Publicação: 31/05/1994
Periodicidade: Trimestral

A GENERALIZED ABOVEGROUND BIOMASS MODEL FOR JUVENILE INDIVIDUALS OF Rhododendron arboreum (SM.) IN NEPAL

Ano: 2019 | Volume: 25 | Número: 2
Autores: Rana Bahadur B.K., Ram P. Sharma, Shes K. Bhandari
Autor Correspondente: Shes K. Bhandari | shesu15@yahoo.com

Palavras-chave: Allometric modelling, Community forest, Crown measures, Crown spread ratio, Height-to-diameter ratio

Resumos Cadastrados

Resumo Inglês:

Carbon in the juvenile plants contribute significant share to the total carbon stock in forests. A precise estimate of aboveground biomass of the juvenile stages of trees is therefore very important. We developed a generalized allometric biomass model for the prediction of aboveground biomass of the juvenile individuals of Rhododendron arboreum (Sm.). We used data from 66 destructively sampled juveniles of R. arboreum in Gorkha district- one of the mountainous districts in Nepal, for the purpose. Using eight nonlinear functions of various forms (power, exponential, fractional forms), we evaluated several individual-level characteristics, such as size (diameter, height), crown measures (crown ratio, crown width, crown spread ratio, crown index, crown fullness ratio), height-todiameter ratio (plant bole slenderness), number of branches, wood density, and standlevel characteristics, such as altitude and slope of sites for their potential contributions to the biomass variations of the juvenile individuals. A simple power function with crossproduct of the squared-diameter and height as a main predictor and crown spread ratio as a covariate predictor showed the best fit to data (R2 adj=0. 90); RMSE=59.35 g) without substantial trends in the residuals. Our model is site-specific and its application should therefore be limited to those stands which were the basis of this study. Further works on recalibration, validation, and verification of our model using a larger dataset collected from a wider range of species distribution will be more interesting