Problemas clássicos de Geometria Euclidiana ilustrados no Geogebra

REMAT: Revista Eletrônica da Matemática

Endereço:
Rua. Gen. Osório - Centro
Bento Gonçalves / RS
Site: https://periodicos.ifrs.edu.br/index.php/REMAT
Telefone: (54) 3204-2100
ISSN: 2447-2689
Editor Chefe: Greice da Silva Lorenzzetti Andreis
Início Publicação: 02/08/2015
Periodicidade: Semestral
Área de Estudo: Ciências Exatas, Área de Estudo: Matemática

Problemas clássicos de Geometria Euclidiana ilustrados no Geogebra

Ano: 2015 | Volume: 1 | Número: 2
Autores: Jorge Mauro da Silva Junior, Nicoli Peroza Ramos
Autor Correspondente: Nicoli Peroza Ramos | nicoli.peroza@hotmail.com

Palavras-chave: Geogebra; Geometria Euclidiana; Ilustração; Problemas Clássicos

Resumos Cadastrados

Resumo Português:

A interpretação e o entendimento de postulados, teoremas e/ou demonstrações matemáticas configuram um processo evolutivo, ou seja, somente com a prática através da leitura, interpretação e muitas vezes ilustração é que conseguimos entender de fato o que estes querem dizer. Salienta-se que, com o avanço da tecnologia, temos cada vez mais recursos para facilitar tais entendimentos. Através do software Geogebra é possível ilustrar problemas geométricos. Por exemplo, é de fácil verificação e construção o fato de que a soma dos ângulos internos de um triângulo independe do triângulo, o que acaba por tornar mais clara a visualização de resultados, além de auxiliar no processo evolutivo de assimilação e elaboração de conjecturas. A partir desta pesquisa, que envolve a ilustração de uma lista de problemas clássicos da Geometria Euclidiana Plana, atuamos tanto como pesquisadores quanto pesquisados, já que o problema surgiu a partir de nossas dificuldades em visualizar tais teoremas e utilizar o software como um auxílio. Tendo o objetivo de facilitar o entendimento dos problemas, propomos como meta a ilustração dos mesmos com o auxílio do software Geogebra. Como resultado esta pesquisa aponta exemplos de indagações e conjecturas que poderão ser utilizados por professores de Matemática e por alunos. Por fim, uma vez que, após explorar certas descobertas com as ilustrações, surge a necessidade de uma demonstração para cada problema, deve-se, citando De Villiers (2002, p. 13), “utilizar inicialmente a função mais fundamental de explicação e descoberta para introduzir a demonstração como uma atividade significativa para os alunos”.